387 research outputs found

    Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors

    Get PDF
    The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors.Picower Institute for Learning and Memory (Innovation Fund)Whitehall Foundation (2012-08-45)Wade AwardPicower Neurological Disorder Research FundNational Science Foundation (U.S.). Graduate Research Fellowship ProgramIntegrative Neuronal Systems Center (Grant 6926328)Brain and Cognitive Sciences Special Award (1497200)Marcus Fellowship to Honor Norman B. Leventhal (3891441

    Macrophages in solid organ transplantation

    Get PDF
    Macrophages are highly plastic hematopoietic cells with diversified functions related to their anatomic location and differentiation states. A number of recent studies have examined the role of macrophages in solid organ transplantation. These studies show that macrophages can induce allograft injury but, conversely, can also promote tissue repair in ischemia-reperfusion injury and acute rejection. Therapeutic strategies that target macrophages to improve outcomes in solid organ transplant recipients are being examined in preclinical and clinical models. In this review, we discuss the role of macrophages in different types of injury and rejection, with a focus on macrophage-mediated tissue injury, specifically vascular injury, repair and remodeling. We also discuss emerging macrophage-centered therapeutic opportunities in solid organ transplantation

    The value of chest CT for prediction of breast tumor size: comparison with pathology measurement

    Get PDF
    BACKGROUND: Little information is available on the use of chest computed tomography (CT) to predict breast tumor size in breast cancer, despite the fact that chest CT examinations are being increasingly used. The purpose of this study was to evaluate the value of chest CT for predicting breast tumor size using pathology measurements as reference standards. METHODS: Tumor sizes (defined as greatest diameter) were retrospectively measured on the preoperative chest CT images of 285 patients with surgically proven unifocal, invasive breast carcinoma. Greatest tumor diameters as determined by chest CT and pathologic examinations were compared by linear regression and Spearman’s rho correlation analysis. Concordance between CT and pathology results was defined as a diameter difference of <5 mm. Subgroup analyses were also performed with respect to tumor size (<20 mm or ≥20 mm) and histological subtype (invasive ductal carcinoma(IDC) or non-IDC). RESULTS: CT and pathology measured diameters were found to be linearly related (size at pathology = 1.086 × CT determined tumor size - 1.141; Spearman’s rho correlation coefficient = 0.84, P<0.001). Most tumors (n = 228, 80.0%) were concordant by chest CT and pathology, but 36 tumors (12.7%) were underestimated by CT (average underestimation, 11 mm; range, 6–36 mm) and 21 tumors (7.4%) were overestimated (average overestimation by CT, 10 mm; range, 6–19 mm). The concordance rate between the two sets of measurements was greater for tumor of <20 mm and for IDC (P<0.001 and P = 0.011, respectively). CONCLUSIONS: Tumor size by chest CT is well correlated with pathology determined tumor size in breast cancer patients, and the diameters of the majority of tumors by chest CT and pathology differed by <5 mm. In addition, the concordance rate was higher for breast tumors of <20 mm and for tumors of the IDC histologic subtype

    Clinicopathological Risk Factors and Biochemical Predictors of Safe Discharge after Total Thyroidectomy and Central Compartment Node Dissection for Thyroid Cancer: A Prospective Study

    Get PDF
    To determine the clinicopathological risk factors and reliable biochemical predictors of the development of hypocalcemic symptoms after total thyroidectomy on the basis of serum calcium and intact parathyroid hormone (PTH) levels measured 1 hour after surgery, a prospective study was performed on 817 patients who underwent a total thyroidectomy with central compartment node dissection (CCND) due to well-differentiated thyroid cancer. We evaluated the correlations between hypocalcemic symptom development and clinicopathological factors. And the predictability for hypocalcemic symptom development of intact PTH cut-offs (<10 pg/mL and <20 pg/mL, resp.) according to serum calcium level subgroup was analyzed. Female gender (P<0.001) was the only independent risk factor for hypocalcemic symptom development in multivariate regression analysis. The negative predictive value (NPV) of intact PTH, signifying nondevelopment of hypocalcemic symptoms, was higher than the positive predictive value (PPV) which signified development of hypocalcemic symptoms. In addition, when we applied the different adoption of the intact PTH cut-off according to serum calcium level, we could obtain more increased NPVs. A female gender and the application of more specific cut-offs for intact PTH according to the serum calcium levels measured 1 hour after surgery may help the patients to be more safely discharged

    The Balloon Dilatation and Large Profile Catheter Maintenance Method for the Management of the Bile Duct Stricture Following Liver Transplantation

    Get PDF
    We dated a continuous, ∼22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ∼450 yr during glacial and late glacial time to ∼200 yr during the early and mid-Holocene, and increasing again to ∼250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ∼50-230 yr during the Holocene and ∼250-550 yr in the glacial section of the record. The δ13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin

    Peritonsillar Abscess in a 40-Day-Old Infant

    Get PDF
    A peritonsillar abscess is one of the most commonly occurring deep space infections of the head and neck in adults and children. A peritonsillar abscess that appears in newborns, however, is extremely rare. The treatment of a peritonsillar abscess requires both the selection of appropriate antibiotics and the best procedure to remove the abscessed material. We report a case of a peritonsillar abscess in a 40-day-old infant who was treated with antibiotic therapy alone
    corecore